

Computer Science

INVESTIGATION OF SAT-BASED SCHEDULING TECHNIQUES IN COMPARISON WITH
TRADITIONAL APPROACHES, Ricky P. Guidry, Stefan Andrei*, Lamar University, Department of
Computer Science, Beaumont, TX, 77710, sandrei@cs.lamar.edu

Given a set of tasks, the scheduling problem means to find a particular schedule such that all the tasks
are executed by a processor before their time deadlines. In our modern society, the scheduling problem
has significant applications in many technological areas, such as, real-time embedded systems, and
networks. Since the scheduling problem is hard, researchers look for efficient heuristics to solving it.
Similar to preparing a schedule of tasks that must be done in everyday life, scheduling a set of computer
tasks, or processes, means to determine when to execute which task, thus determining the execution
order of these tasks. A periodic task has many instances, and there exists a fixed period between two
consecutive releases of the same task. In case of a multiprocessor or distributed system, scheduling
implies also determining which processors get each specific task.

A task T is characterized by: S – the start time, or release time; c – computation time, also
considered as the worst case execution time; d – the deadline; p – the period. There usually exists in
practice additional constraints that may complicate scheduling the tasks within the deadlines. For
example, dealing with task that share resources, or whether the task can be preempted. Many of the
practical scheduling problems are known to be Nondeterministic Polynomial-Time Hard (NP-hard). An
informal definition of NP-hard is simply that the problem is "at least as hard as the hardest problems in
NP". The difficulty of NP problems is that the computation time is directly proportional to the size of the
problem. In simpler terms the harder and more complex the problem the more computation time is
required to calculate the solution.
 The most popular scheduling heuristic techniques are rate-monotonic (RM), earliest-deadline-first
(EDF), least-laxity-first (LLF). All these techniques offer solutions in polynomial time for large classes of
tasks sets. An algorithm is said to run in polynomial time if the run time is no greater than a polynomial
function of the problem input size. A set of tasks are considered to be feasible if there exists a scheduler
can schedule all the tasks. In other words, a set of tasks is feasible if each task can complete execution
by its deadline.

Many researchers have been working on the Satisfiability (SAT) problem for a long time and
many researchers have successfully contributed to the field. The SAT problem is determining whether the
propositional formula can be equated to true and is one of the most central problems in computer
science. The purpose of our research is to investigate how to transform a non-feasible task set into a
feasible task set, while minimizing the deadline increase. Our work investigates which task’s deadline has
to be increased to make the set of tasks feasible. The novelty of this work is that our algorithm is based
on the SAT problem. Using the C++ programming language we have implemented a program that will
take a task set as input, encoded the task set into the DIMACs format and output the encoded task set.
The encoded task set is then run through the zChaff SAT solver. If the encoded task set is found to not be
feasible then the deadlines of the original task set are increased slightly. Then the task set is run through
the program again. This process is repeated until the unfeasible task set is found to be feasible.
 Experiments on the implementation of this project have been conducted and the results are
promising. We used an Intel Pentium3.20 GHz processor, using 2 GB of memory.

Ricky Paul Guidry was supported by LU-REG grant of Dr. Stefan Andrei

mailto:sandrei@cs.lamar.edu

